Universitetet i Sørøst-Norge

Department of Microsystems, USN Horten, Vestfold

iải **18.000 65** BACHELOR BA PROGRAMMES $\mathcal{O} \mathcal{O} \mathcal{O}$ STUDENTS 36 MASTER MA PROGRAMMES ΪΔ̈́Ϊ 1.500 000 PHD 9 PhD **EMPLOYEES** PROGRAMMES

 $\land \land \land \land$ CAMPUSES

BØ – DRAMMEN – KONGSBERG NOTODDEN – PORSGRUNN RAULAND – RINGERIKI: – VESTFOLD

CAMPUS BØ

CAMPUS DRAMMEN

CAMPUS KONGSBERG

CAMPUS NOTODDEN

CAMPUS PORSGRUNN

CAMPUS RAULAND

CAMPUS RINGERIKE

CAMPUS VESTFOLD

Faculty of Technology, Natural Sciences and Maritime Sciences (TNM)

Departments:

- Microsystems
- Maritime Operations
- Natural Sciences and Environmental Health
- Electrical Engineering, IT and Cybernetics
- Process, Energy and Environmental Technology
- Science and Industry Systems

KONGSBERG BØ VESTFOLD PORSGRUNN

Ansatte: ca. 250 Studenter: ca. 2 600

Engineering educations

- BSc
 - Computer science Cybersecurity
 - Mechanical Product Design
 - Electrical Electro, automation and robotics
 - Electronics Electronci systems design
 - Electronics Micro- og nanotechnology
- MSc
 - Micro og nano system technology
 - Smart systems integrated solutions
 - E-commerce og cybersecurity
- PhD
 - Applied micro- og nano systems

Electro, automation and robotics

- Helge Kristiansen (Programkoord)
- Marius Tannum
- Christian Hovden
- Johannes Lomsdalen
- Fabio Andrade
- Knut Åsatun
- Odd Smith-Jansen

Study model

1. klasse		2. klasse		3. klasse		
1. sem.	2. sem.	3. sem.	4. sem.	5. sem.	6. sem.	
Robotikk	Matematikk I	Matematikk II	Statistikk	Valgfag	Systememnet	
Digitalteknikk I	Fysikk I	Prosjektering av elektriske anlegg				
Elektrisiteslære I	Elektrisistetslære II	Elektriske maskiner	og kraftelektronikk	Valgfag		
Programmering for beregning		PLS og instr	umentering	Valata	Баспеногоррдаче	
Ingeniørrollen	OOP grunnkurs	Fysikk II for elektro	Reguleringsteknikk	vaigrag		

Ingeniørfaglig basis Programfaglig basis Teknisk spesialisering Valgfri spesialisering

Valgfag

Digital automasjonsdesign
Maritim elektro-automasjon og robotikk
Operativsystemer for robot videregående
Introduksjon til datasikkerhet
Ingeniørpraksis
Studentbedrift
Matematikk III

Study model EAR - Robotics

1. klasse		2. klasse		3. klasse	
1. sem.	2. sem.	3. sem.	4. sem.	5. sem.	6. sem.
Robotikk	Matematikk I	Matematikk II	Statistikk	Valgfag	Systememnet
Digitalteknikk I	Fysikk I	Prosjektering av elektriske anlegg			
Elektrisiteslære I	Elektrisistetslære II	Elektriske maskiner	og kraftelektronikk	Valgfag	
					Pachaloroppgavo
Programmering for beregning	OOP gruppkurs	PLS og instr	umentering	Valafaa	распеюторрвале
Ingeniørrollen	OUP grunnkurs	Fysikk II for elektro	Reguleringsteknikk	Vaigrag	
				Valafaa	

Valgfag

Digital automasjonsdesign

Maritim elektro-automasjon og robotikk

Operativsystemer for robot videregående

Study model EAR - Automation

1. klasse		2. klasse		3. klasse	
2. sem.	3. sem.	4. sem.	5. sem.	6. sem.	
Matematikk I	Matematikk II	Statistikk	Valgfag	Systememnet	
Fysikk I	Prosjektering av	elektriske anlegg			
Elektrisistetslære II	Elektriske maskiner	r og kraftelektronikk	Valgfag		
				Bacheloroppgave	
OOP gruppkurs	PLS og instrumentering		Valufau	Баспетогоррдаче	
OOF grunnkurs	Fysikk II for elektro	Reguleringsteknikk	Vaigrag		
			Valgfag		
			Digital automasjons	design	
			Maritim elektro-aut	omasjon og robotikk	
			Operativsystemer fo	or robot videregående	
	2. sem. Matematikk I Fysikk I Elektrisistetslære II OOP grunnkurs	lasse 2. sem. 2. sem. 3. sem. Matematikk I Matematikk II Fysikk I Prosjektering av Elektrisistetslære II Elektriske maskiner OOP grunnkurs PLS og instr Fysikk II for elektro Fysikk II for elektro	lasse 2. klasse 2. sem. 3. sem. 4. sem. Matematikk I Matematikk II Statistikk Fysikk I Prosjektering av elektriske anlegg Elektrisistetslære II Elektriske maskiner og kraftelektronikk OOP grunnkurs PLS og instrumentering Fysikk II for elektro Reguleringsteknikk	lasse 2. klasse 2. sem. 3. sem. 4. sem. Matematikk I Matematikk II Statistikk Fysikk I Prosjektering av elektriske anlegg Valgfag Elektrisistetslære II Elektriske maskiner og kraftelektronikk Valgfag OOP grunnkurs PLS og instrumentering Valgfag Fysikk II for elektro Reguleringsteknikk Valgfag	

Study model EAR - Electro

1. klasse		2. klasse			3. klasse	
1. sem.	2. sem.	3. sem.	4. sem.		5. sem.	6. sem.
Robotikk	Matematikk I	Matematikk II	Statistikk		Valgfag	Systememnet
Digitalteknikk I	Fysikk I	Prosjektering av	Prosjektering av elektriske anlegg			
Elektrisiteslære I	Elektrisistetslære II	Elektriske maskiner		Valgfag		
Pashalaranngaya						
Programmering for beregning		PLS og instrumentering			Valutad	Dacheloroppgave
Ingeniørrollen	COL BLUILLING	Fysikk II for elektro	Reguleringsteknikk		vaigiag	

Valgfag

Digital automasjonsdesign

Maritim elektro-automasjon og robotikk

Operativsystemer for robot videregående

Robotics (1 år)

- Introduction to robot programming in the Python programming language
- Combined online learning and in-class teaching and guidance
 https://www.theconstructsim.com/

Robotics 2 - Real life challenges

Robotics 2 - Use of new technology

Robotics 2 - Simulated and Practical

Control systems - MATLAB Simulations

Challenging example: Inverted Pendulum

MATLAB Simulations

Real Implementation

clear <u>all</u>

```
dq = daq('ni');
dq.Rate = 1000;
addinput(dq, "Dev1", "ai0", "Voltage");
addinput(dq, "Dev1", "ai2", "Voltage");
addinput(dq, "Dev1", "ai3", "Voltage");
addoutput(dq, "Dev1", "ao0", "Voltage")
addoutput(dq, "Dev1", "port0/line0", "Digital")
```

```
SP = 0;
acc_error = 0;
prev_error = 0;
```

```
dt = 0.05;
```

```
Kp = 8;
Ki = 3;
Kd = 1.5;
```

while(1)

```
sensor_data = read(dq);
    theta_rad = sensor_data{1,"Dev1_ai3"}*30/2*pi/180;
    tacho = sensor_data{1,"Dev1_ai2"}
    error = SP - theta rad;
    rate_error = (error-prev_error)/dt;
    acc_error = acc_error + error*dt;
   if acc_error > 1
        add_error = 1;
    end
    if acc_error < -1
        add_error = -1;
    end
    prev_error = error;
    u = Kp*error+Ki*acc_error + Kd*rate_error;
    if u > 4
        u=4;
    end
    if u < -4
        u=-4:
    end
    u = -u;
   %write(dq,[u+5 1]);
   pause(dt);
end
```


Automation

Automation – PLC programming and HMI

7/25/2022

Robot servo = electro + automation

Engineering projects: PLS- og HMI-programming

Automation labs

Digital automation design (new course fall 2022)

- The design of automation systems from local sesors to the cloud.
- Human-Machine Interaction (HMI) from an operational level (PLC & HMI) to the enterprice level (ERP) taking advantage of Information Management Systems for visualisation (Dashboards), alarm statistic, treding and reporting.
- A special focus on the design process with use-cases and prototyping

Transformers 22kV/400V

Using computer tools

Engineering projects – power systems for production plants and buildings

Cricuit Breakers

14

Cables

ical distribution

3

Prosjektering av elektriske anlegg

Prosjektering av elektriske anlegg

Schematical drawings for control- and main circuits - Plan and draw first, then test it with components

Engineering Project

Prosjektering av elektriske anlegg

Theory first, then practical lab exercises

Elektriske maskiner og kraftelektronikk

Research groups

- Autonomy
- Secure distributed Systems
- BioMEMS
- Materials and microintegration
- Micro- and nanomechanical systems

Autonomy

Research, course development and teaching of autonomous systems and related techology. The group has a particular focus on maritime applications and risk analysis.

Main areas of interest:

- Digital cross-disiplin development processes
- Maritime autonomous systems
- Human-machine interfaces
- Robot operating system

Members

Marius S. Tannum (leader) Fabio Augusto de Alcantara Andrade Helge Tor Kristiansen Christian Hovden Knut F. Åsatun Odd Smith-Jahnsen

Members from other departments: Kristin Falk (IRI) Nils-Olav Skeie (EIK) Ru Yan (EIK) Hyungju Kim (IMA)

<u>AutoDrone</u>

July 2022

Underwater sensor-system

Autonomy research

Detection and tracking of crossing vessels for small autonomous vessels equipped with stereo camera

Fabio A. A. Andrade University of South-Eastern Norway NORCE Norwegian Research Centre Norway Email: fabio@ieee.org

Marius Tannum University of South-Eastern Norway Norway Email: marius.tannum@usn.no

Adrian Knutsen University of South-Eastern Norway Norway

Nina Tran University of South-Eastern Norway Norwegian University of Science and Technology Norwegian University of Science and Technology Norway

Torben Falleth Olsen University of South-Eastern Norway

Norway

Tobias Tufte Kongsberg Maritime Norway

Carlos A. M. Correia Federal Center for Technological Education of Rio de Janeiro Brazil Email: ccorreiaprof@gmail.com

Abstract-When Small Autonomous Vessels perform a mission in a non-segregated area, that is, an area where other vessels (manned or not) will also be present, they need to be able to comply with navigation rules, such as collision avoidance. In order to decide to give-way or stand-on, the autonomous vessel must keep track of other vessels. In this work, a vessels detection and tracking solution is presented. The system uses a depth camera, IMU, magnetometer and GNSS as main sensors for this task. The boat detection is performed by the SSD-MobileNet V2 Neural Network pre-trained with the COCO dataset. The tracking is performed by a simple and fast algorithm, and the samples are later filtered using a Kalman Filter. The solution is implemented in the Robot Operating System (ROS) framework. Practical tests were performed, where stationary and moving targets were tracked. Results show that the method performs well and is able achieve even better results after some fine tuning.

Additionally, in [5], the authors expose and discuss the results of an exercise with maritime autonomous vessels for collision avoidance, in compliance with the COLREG instructions.

In [6], probabilistic data of a vessel movement was calculated in order to infer its trajectory in a generalized framework for obstacle intentions predictions. These predictions are used in a collision avoidance (COLAV) system. The Probabilistic Scenario-Based Model Predictive Control (MPC) was employed and a finite set of obstacle maneuvers were considered and its respective probability of collision were estimated.

In [7], a new approach in the collision avoidance problem was proposed, using a prediction model of the simulationbased MPC to model the unmanned surface vehicle (ASV)

Image Capture and Object Detection

NVIDIA INFERENCE TOOLKIT

Ô

PRE-TRAINED NEURAL NETWORK SSD-MOBILENET V2

COCO 2017 DATASET

Direct Georeferencing

(Down)

$$\begin{bmatrix} x_C \\ y_C \\ z_C \end{bmatrix} = \mathbf{K}^{-1} z_C \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}.$$
 (1)

where the intrinsic camera matrix K is given by:

$$\mathbf{K} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$
(2)

The matrix parameters are made available by the ZED2 Camera ROS Wrapper and obtained by subscribing to the ROS Topic /zed/left/camera_info.

Now, to calculate the detected boat position in the body frame, a simple rotation is needed followed by a translation:

$$\begin{bmatrix} x_B \\ y_B \\ z_B \end{bmatrix} = \mathbf{R}_{\mathbf{C} \to \mathbf{B}} \begin{bmatrix} x_C \\ y_C \\ z_C \end{bmatrix} + \mathbf{T}_{\mathbf{C} \to \mathbf{B}}, \tag{3}$$

where $\mathbf{T}_{\mathbf{C}\to\mathbf{B}}$ is the position of the camera in the body frame and the rotation from the camera to the body frame $(\mathbf{R}_{\mathbf{C}\to\mathbf{B}})$ is given by:

$$\mathbf{R}_{\mathbf{C}\to\mathbf{B}} = \begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} \tag{4}$$

Tracking Algorithm

Algorithm 1 Tracking

- 1: Define $timeout_{max}$
- 2: Define distance_{max}
- 3: Input detections
- 4: Input *points*
- 5: for point in points do
- 6: for detection in detections do
- 7: Calculate *distance* between *detection* and *point*
- 8: **if** $distance > distance_{max}$ **then**
 - $distances \leftarrow distance$
- 10: end if
- 11: end for
- 12: end for

9:

- 13: $points_{temp} \leftarrow points$
- 14: while distances do
- 15: $distance_{temp} \leftarrow minimum \ distance \ in \ distances$
- 16: $point(distance_{temp}) \leftarrow detection(distance_{temp})$
- 17: $timeout(point(distance_{temp})) \leftarrow 0$
- 18: Delete $detection(distance_{temp})$
- 19: Delete $points_{temp}(distance_{temp})$
- 20: Delete distance in distances

21: end while

- 22: for point in points_{temp} do
- 23: Add 1 to timeout(point)
- 24: **if** $timeout(point) > timeout_{max}$ **then**
- 25: Delete *point* in *points*
- 26: end if
- 27: end for
- 28: for detection in detections do
- 29: Create a new *point*
- 30: $point \leftarrow detection$

31: end for

Kalman Filter

E. Filtering

A Kalman Filter was used to estimate the positions and velocities of the detected boats based on the tracked detected positions. A new Kalman Filter is initialized and assigned to each new tracked point created.

As the boats are on sea level, only the horizontal coordinates are used. Therefore, the measurement vector z is equal to [x, y] and the state vector x is equal to $[x, y, v_x, v_y]$, where x and y are the East and North positions and v_x and v_y are the East and North velocities. The observation matrix (H) is, therefore, given as:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},\tag{6}$$

and the state transition matrix (A) is given as:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
(7)

where Δt is calculated every loop based on the time between the current and the previous detection. No control input data was used in the prediction step.

Results

Q1

Q2

Q3

Q2

Q3

Q4

SeaDrone moving straight tracking a steady boat

SeaDrone rotating around the tracked boat

SeaDrone moving when tracking multiple moving humans

- Make more field tests and improve the Software
- Improve the Kalman Filter
- Test the detection on the sea
- Update the Neural Network with more boat data
- Implement a Model Predictive Control to avoid collision
- Compete in <u>AutoDrone</u>

Future Work

References

REFERENCES

- I. M. Organization, COLREG: Convention on the International Regulations for Preventing Collisions at Sea, 1972. IMO, 2003.
- [2] U. of South-East Norway. Autodrone. [Online]. Available: https://www.autodrone.no/
- [3] V. Kamsvåg, "Fusion between camera and lidar for autonomous surface vehicles," mastersthesis, NTNU, 2018.
- [4] Ø. K. Helgesen, "Sensor fusion for detection and tracking of maritime vessels," mastersthesis, NTNU, Trondheim, 2019.
- [5] D. K. M. Kufoalor, T. A. Johansen, E. F. Brekke, A. Hepsø, and K. Trnka, "Autonomous maritime collision avoidance: Field verification of autonomous surface vehicle behavior in challenging scenarios," *Journal of Field Robotics*, vol. 37, no. 3, pp. 387–403, 2020.
- [6] T. Tengesdal, T. A. Johansen, and E. Brekke, "Risk-based autonomous maritime collision avoidance considering obstacle intentions," in 2020 IEEE 23rd International Conference on Information Fusion (FUSION). IEEE, 2020, pp. 1–8.
- [7] I. B. Hagen, D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen, "Mpc-based collision avoidance strategy for existing marine vessel guidance systems," in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 7618–7623.
- [8] D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen, "Proactive collision avoidance for asvs using a dynamic reciprocal velocity obstacles method," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 2402–2409.
- [9] T. A. Johansen, T. Perez, and A. Cristofaro, "Ship collision avoidance and colregs compliance using simulation-based control behavior selection with predictive hazard assessment," *IEEE transactions on intelligent transportation systems*, vol. 17, no. 12, pp. 3407–3422, 2016.
- [10] S. Labs. Zed 2. [Online]. Available: https://www.stereolabs.com/zed-2/
- [11] NVIDIA. Jetson xavier nx. [Online]. Available: https://www.nvidia.com/en-us/autonomous-machines/embeddedsystems/jetson-xavier-nx/
- [12] R. PI. Raspberry pi 3 model b+. [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
- [13] emlid. Navio2. [Online]. Available: https://navio2.emlid.com/
- [14] Simrad. Simrad hs60 gps compass sensor simrad norge. [Online]. Available: https://https://www.simrad-yachting.com/nbno/simrad/type/kompass/hs60-gps-compass/
- [15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, "Microsoft coco: Common objects in context," in *European conference on computer vision*. Springer, 2014, pp. 740–755.

Secure distributed systems

The research group develops and teaches courses in additon to research and development related to computations, infrastructure, machine hardware, software and security of these systems.

Distributed systems in our context is the combination of computer based systems that appares as one system.

Parts of special interest:

- Big Data
- Cloud Computing
- Cyber Security
- High speed data capture
- Intrusion detection
- Artificial intelligence (AI) and machine learning
- Optimization (performance/precision)
- Internet of Things (IoT)

Members

Geir Myrdahl Køien (lead) Thomas Nordli Geir Varholm Jørgen Lien Rune Langøy Noureddine Bouhmala Roar Georgsen

BioMEMS

BioMEMS – Biomedical Microelectromechanical Systems – is a subject that combines applied micro- and nanotechnology with biology

Medicine is one primary application field of BioMEMS platforms, which target:

- Point of care diagnostics
- Therapy and drug handling. It is also used to
- Monitor processes in the body for potential diseases

BioMEMS is an interdisciplinary field that combines natural sciences (physics, biology and chemistry) with electronics, mechanics, biomedical engineering, as well as computer science, materials science, medicine and mathematics.

Members

Lars E. Roseng Erik A. Johannessen Tao Dong Frank Karlsen Jörn Klein

The Photosense Project

About CtrlAQUA

Centre of Research-based Innovation in Closed-Containment Aquaculture

Closed system aquaculture

Materials and microintegration

The group of materials and micro-integration performs research on system integration of a wide variety of smart systems, with a particular focus on material-related problems.

Topics:

- Packaging/ systemintegration of microelectronics
- Packaging/ systemintegration of medical devices
- Miniaturization of smart systems and devices
- Bonding technologies for harsh environments
- Intermetallic bonding (SLID)
- Conductive adhesive bonding
- Manufacturing processes for ultrasound transducers
- Integration of functional nanomaterials in microelectronics
- Nanostructures of Wide Bandgap semiconductors for photocatalytic applications

Members

Knut Aasmundtveit (leader) Kristin Imenes Kaiying Wang Hoang-Vu Nguyen Jan Kåre Bording Truls Frednes Bao Quoc Ta Per Olaf Stensgaard Ole Henrik Gusland Anh Tuan Nguyen Muhammad Tayyib

Implantable Interface for Neuroprosthesis

Micro- and Nanoelectromechanical Systems (MNEMS)

The research group contributes to teaching and academic supervision primarily on research topics related to devices and systems using micro- and nanotechnologies.

Our main research focus is to use micro- and nanotechnologies for devices and process technologies to advance electronic sensors, actuators and systems used in industrial instrumentation, environment control, health care, maritime and oil & gas applications, e.g.

- Ultrasound applications
- Optics and photonics
- Energy storage and harvesting
- Piezoelectric devices

Members

Ulrik Hanke (leader) Per Øhlckers (emeritus) Mehdi Azadmehr Xuyuan Chen Einar Halvorsen Lars Hoff M. Nadeem Akram Agne Johannessen Tung Manh (20%) Hans J. Alker (emeritus) Luca Marchetti (20%) Hamed Salmani

Ultrasound transducers

USN Laboratory facilities

• 1100 m² MST lab in the Vestfold Research Park

Main facts:

Location: Campus Vestfold Cleanroom Area: 500 m² Ultrasound/Charact/Biotech Labs: 600 m² Start: 2002 - New labs 2013 Type: R&D, Education, Industry projects. 130 high tech tools Staff: 6 Lab Engineers. 14 professors / 4 asc professors

- Medical devices
- Aerospace/space
- Automotive
- Energy
- Climate/Environment

Institutt for Mikrosystemer

SINTEF

NTNU

UiO : University of Oslo

Universitetet i Sørøst-Norge

MST-Lab at USN Campus Vestfold– Systems, Packaging and interconnectivity

Main competence:

- Packaging of microelectronics
- Characterization SEM
- Sputter/Electroplating
- Chip/Wafer-bonding
- Flip-Chip interconnect
- BioMEMS
- Environmental testing

More than 30 active industry partners,

- Sensonor
- PoLight
- Projection Design Barco
- Kongsberg NorSpace
- Kongsberg Maritime
- GE Vingmed Ultrasound
- SINTEF
 - Jotun 🕥 SINTEF
- SensoCure
- Memscap
- CARDIACCSSensocure
- Sensocure
 Medistim
- MEMSCAP The Power of a Small World[™]
- Lærdal
- ++

Universitetet i Sørøst-Norge

Institutt for Mikrosystemer

KO GE Medica

JOTUN

IMS MST-Laboratories

Objective:

- Lab intensive education Bachelor, Master, PhD (Electronics-El/auto-Data-Product design-Micro/Nanotech)
- BOA projects with industry
- Research activities Nanomaterials- MEMS- Sensors-Bio
- National/International funded projects

IMS labs @ Campus Vestfold:

- * Micro/Nanotechnology, 5 labs, 160 equipment
- * Electronics, 3 labs
- * Electro/Automation, 2 labs
- * Product Design,1 lab,1mechanical workshop
- * Data, 1 lab, 2 server rooms

- Micro/nanofabrication (MEMS) Cleanroom lab
- Packaging semiconductors/sensors, Cleanroom lab
- Material Characterization (2 SEM, AFM, SAM)
- Ultrasound lab
- BiologyMEMS/Biomedical
- Product Design, 3D print lab
- Electronics, 3 student labs
- Electro/automation (incl Maritime) 2 student labs
- Data labs, 1 student lab (30 PC's, 2 server-room)

Technologies

Lab Facilities

The technologies offered at NorFab are divided in the following nine categories:

Thermal processes Thin film deposition Lithography Dry etching Characterisation Bonding and packaging

NorFab provides access to state-of-the-art laboratories for Norwegian researchers, independent of their academic, institute or company affiliation. The laboratories include the three nodes NTNU NanoLab in Trondheim, SINTEF MiNaLab and UiO MiNaLab in Oslo, and the University of South-Eastern Norway's MST-Lab between Tønsberg and Horten.

We offer more than 2000 m² of cleanroom

News 3

Opening a new window into nature's smallest building blocks

Organic nanomaterials are some of our smallest building blocks. They can change everything from medical treatment to building constructions.

Two engineering positions at NTNU NanoLab

We have currently two open engineering positions at NTNU NanoLab in Trondheim. If you know someone who might be suitable and interested, please do let them know.

Norwegian NanoSymposium October 5-6, 2021

USN MST-Lab

Elipsometer

Location: between Tønsberg and Horten, 100 km south of Oslo Cleanroom size: 400 m²

The MST-Lab is a flexible cleanroom facility for MEMS processes on silicon wafers and other substrates with emphasize on bonding, packaging and Micro-System-Technology. Therefore the laboratory also contains advanced tools for testing, dicing, pick and place, fine-pitch wire bonding and different flip chip methods. In addition, IMST has laboratories for: material preparation and characterization, microsystem measurements (electrically and optically) and BioMEMS research like assembly, packaging and testing of lab-on-chip and microfluidic microsystems. Website

Force 2-700 N)

Centrifuge Eppendorf 5702R

Technologies and equipment at USN MST-Lab

Thermal processes	Thin film deposition	Lithography		
Climate Cabinet (Weiss)	Au sputter VG Microtech SC500	Fume Hood 4 for General Solvents		
CNT-reactor	Electroplating Ni	Fume Hood 5 for corrosive chemicals		
Oxidation Oven Harmbridge HiTech furnace	Electroplating of Cu and Sn	Fume hood 7 – Corrosive		
Temp chamber Lenton 202	Fume Hood 6- Au electroplating, Ti etch	Mask Aligner – Karl Suss MA56 (new)		
Thermal Chamber Heraeus T6200	Laminar flow bench 4 Metal finger	Mask Aligner EVG 620		
Thermal Chamber Lenton WHT6/30	Plasma cleaner Addax	Rinse and dry STI Semitool		
Thermal Chamber Thermaks TS4115	Profilometer DEKTAK 150	Spinner 1 Semitool 1		
Thermal Chamber, Heraeus Wötsch	Sputter AJA	Spinner 2 AB Plast Spin 150		
Thermoshaker TS-100	Thermal Evaporator Moorfield MiniLab T25M	Wet Etching AB Plast		
Tube Furnace High Temperature 2'				
Characterisation	Bonding and packaging	Chemical and biological methods		
Acoustic material characterisation	Bond pull tester Micropull	Autoclave		
Acoustic Pulse-Echo measurements	Die Attach Laurier Inc.	Biological Safety Cabinet 2 BIO		
AFM XE-200	Flip-chip bonder FinePlacer Pico (Automatic	Biological Safety Cabinet 3 BIO		

SN ^{Uni}

Centre for Innovative Ultrasound Solutions

For health care, maritime, and oil & gas

Three application areas One common technology

i Ultrasound

- 1) Health
- 2) Maritime
- 3) Offshore oil & gas
- World leading industry
 - Horten cluster: *GE Vingmed, Kongsberg Maritime, FFI(NDRE), Medistim*
- World leading research centres
 - NTNU, UiO, USN Vestfold
- Ultrasound important for Norwegian economy
 - Oil, gas, fish, marine resources, health

Microsystem for Heart Monitoring

- Detect heart infarction
- Surveillance of bypass operated patien
- Early warning if complications occurs
- Faster and more correct treatment than what is possible today

Sensor implanted in the heart muscle

TRILOBITE

Liquid purification

BIOMEDICAL SEPARATION/CONSENTRATION DEVICES MICROFLUIDICS

Institutt for Mikrosystemer

Universitetet i Sørøst-Norge

APPLAUSE - (2019-2022)

Title: Advanced packing for photonics, optics and electronics for low cost manufacturing in Europe **Project leader**: Professor Per Øhlckers

Project supports building on the European expertise in advanced packaging and assembly to develop new tools, methods and processes for high volume mass manufacturing of electrical and optical components

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 826588

Cardiac Effectiveness Indicator (CEI) of cardiovascular health

Partners:

- 8 institutions from Germany
- 8 institutions from Finland
- 3 institutions from Nederland
- 3 institutions from Belgium
- 3 institutions from Austria
- 2 institutions from Switzerland
- 1 institution from France
- 1 institution from Hungary
- 1 institution from Israel
- 1 institution from Latvia
- 3 institutions from Norway

ARMIN – (2019-2023)

Title: Arm neuroprosthesis equipped with artificial skin and sensorial feedback **Project leader**: Professor Lars-Cyril Blystad

This research project aims to develop a personalized arm neuroprosthesis, equipped with artificial skin and sensorial feedback for patients with partially amputated superior limbs, providing the unique capability of bidirectional connect the prosthesis with the peripheral nervous system from the patient stump

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No [number]

Schematic diagram of the neuro-prosthesis and the targeted call priorities.

Partners:

- University Polytechnic of Bucharest (coordinator)
- Academy of Medical Sciences Bucharest
- Floreasca Hospital Bucharest
- National Research and Development Institute for Microtechnology – IMT Bucharest
- Areus Technology SRL Bucharest
- University of South-Eastern Norway, Department of Micro Systems - Norway

Universitetet i Sørøst-Norge